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ON ONE SPECTRUM OF UNIVERSALITY FOR WALSH SYSTEM

M. A. NALBANDYAN"

Chair of Higher Mathematics (Department of Physics) YSU, Armenia

In the present work it is shown that the set D = {ZQZN’ 10, = 0,1} for every
i=0

sequence N, <N, <...< N, <... of natural numbers can be changed into the set of
the form A = {k + o(@(k)): k € D} , where w(k) is an arbitrary, tending to infinity

at k — 4o sequence, such that A is the spectrum of universality for Walsh
system.
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Introduction. Let S be a space of functions defined on [0,1] (for example,
S =1[0,1]) and let T be a type of convergence (for example, the convergence in
I7[0,1] metric or the almost everywhere convergence). Here we will mainly

consider S=1°[0,1] — the class of all almost everywhere finite, measurable
functions and 7 = almost everywhere convergence on [0,1].
A series

gak(pk (x) (1)

is said to be universal in the usual sense for S, T, if for any function f(x)eS

there exists an increasing sequence of natural numbers 7, , such that the corres-

Ty,
ponding sequence of partial sums Y  a ¢;(x) convergesto f (x) in the sense of 7T .
=1
There are also other types of universality such as universality with respect to
rearrangements for S, T : the latter means that for any function f(x)e€ S there

exists rearrangement k > o (k) such that the series Ay Poi)(X) cOnverges to
k=1

f(x) in the sense of T .
We will also say that the series (1) is universal in the sense of partial series
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for S, T, if for any function f(x)e S there exists a partial series Y a, P, (x) of
=1

(1), which converges to f(x) in the sense of T .

The first example of trigonometric series universal in the usual sense for the
class of all measurable functions has been constructed by D.E. Menshoff [1] (see
also [2]). This result was extended by A.A. Talalian [3] to arbitrary complete ortho-

o0
n=1>

normal systems. He also established [4], that if {¢,(x)},_,, x €[0,1], is an arbitrary

orthonormal system, then there exist a series Zak(pk (x), which is universal in the

sense of partial series for the class of all measurable functions and 7 =convergence
in measure on [0,1]. The following general result was obtained by M. Grigorian [5]:

Theorem. The class of orthogonal series simultaneously possessing the
following properties 1), 2) are not empty:

1) universality with respect to rearrangements and in the sense of partial
series both in each L7[0,1], pe[l,2), andin [\ LF[0,1];

1<p<2

2) universality with respect to rearrangements and in the sense of partial series
for S =all measurable functions and 7 =almost everywhere convergence on [0,1].

The fact that there exists a functional series universal with respect to
rearrangements for S =class of almost everywhere finite, measurable functions and
T =almost everywhere convergence, was mentioned by W. Orlicz [6]. Note that
Riemann has proved (see [7], p. 317) that every unconditionally convergent
numerical series is universal with respect to rearrangements for S = all reals.

Definition. The set of natural numbers A, for which it is possible to

construct an universal (in some sense) series Y. a,p; (x), we will call the
e

spectrum of universality (in the same sense).

In the rest of the paper we will consider universal series in Walsh system.

Let w(k) be an arbitrary sequence, tending to infinity as k& — +oo. By the
small change of some set D we will mean the set {k +o(w(k)):k € D}.

Such small transformations of sets were considered for the first time by
G. Kozma and A. Olevskii [8], with the aim to transform these sets into represen-
tation spectrum. More precisely, it was proved by them for trigonometric system
that for any sequence w(k) tending to infinity there is a symmetric representation

spectrum A={ik2 +0(w(k))}k v i.e. each measurable function f allows the

representation f(x)= > c,(f)e™, where the sum converges almost everywhere.
neA

This result was extended to the Walsh system by the author in [9], namely:
Theorem. For arbitrary /e {2* };:0 there exists a subsystem {w, };_,,

n, € (k' +o(k"™)} wy Of Walsh system such that for every measurable function there

exists a series by subsystem {w, 7., converging a.e. to this function. In other words,

there exists a representation spectrum of the form A, = {kl +o(k"™ )}k v le{2)7,.
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Theorem. For arbitrary sequence {w(k)},_,, tending to infinity, there

exists a subsystem {w, Yoo, My € {k* + o(w(k))},.y, of Walsh system such that for

arbitrary measurable function there exists a series by subsystem {w, Yoot
converging a.e. to this function, i.e. there exists a representation spectrum

A= {kz +0(a)(k))}k v (the notation {k* +o(w(k))},.y means that we can find a

sequence a, — 0 such that {k* + o, - (k))},. is a representations spectrum).
Let us consider the set of natural numbers in binary representation:

N= {Z 5,2':6,=0,1 } After substituting all indexes i in the exponents by N,
i=0

(for a given sequence N,<N,<..N;<..) we will get the set
D= {Z é'iZN" :0,=0,1 }, which, as it can be easily seen, cannot be a universality
i=0

spectrum in general. However, for any sequence w(k), tending to infinity, by

small change of D it can be transformed into a spectrum of universality for the
Walsh system. The main result of the present work is the following
Theorem. For any sequence of nonnegative integers N, <N, <...< N, <...

and arbitrary sequence @(k), tending to infinity, the set D = {Z 52" :68,=0,1 }
i=0

can be transformed into the set A = {k + o(@(k)):k e D}={4,},_, by small change
such that A is a universality spectrum (in S=1I°[0,1] and in the sense of
T =convergence almost everywhere ) for Walsh system, i.e. there exists a series

> a, w, (x) with a; -0, such that for arbitrary function f e L’[0,1] there is a
k=1

sequence of natural numbers {v,} such that gim Zk:aiw,l_ (x)= f(x) almost every-
2=l ‘
where on [0,1].
Definitions, Notations and Some Properties. Let us recall the definition of
Walsh system {w, (1)}, in the Paley ordering [10, 11]:
1, te[0, 1/2),

() =w (20),
1, re[l/2, 1], y ()= (2°0)

WO(t):la Wl(t):{

and for natural ¢ with binary representation ¢ = Zin[ , where ¢; =0 or ¢, =1,
i=0

we define  w, (f):l}(wzi (t))q'. Using this definition, it is easy to check the

following properties, which we will use later in the text:
1) for every natural number g we have w, 2F ) = W ®);

2) if natural numbers p and g have nonintersecting binary representation
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(see definition below), then w,(H)w, (1) =w,, (¢) (the property of index addition).

Let p=2°+.--4+2% and ¢=2" +---+2’» be some natural numbers. We
will say that binary representations of numbers p and ¢ do not intersect, if

{igserniy Y OV Jgreomn J, } = D.
1

Let f(t)eL[0,1] and f(k)=[f(@)w()dt be its Fourier—Walsh
0

coefficient. Then for each polynomial P(¢) in Walsh system we have:

P(t) =Y. P(k)w, (0); *)

k>0
L (P), =Y Pkyw,:
k=0
2. spec{P} represents the set of those nonnegative integers k, for which
w, appears in the representation (*);
3. deg{P} is the maximal element of spec{P};
4 Pl= X [P

ke spec{P}
The Construction of the Spectrum of Universality. For the given sequence
N ={N,,N,,...,N,,..} of increasing nonnegative integers we define the following sets:

S(i,n) = {Z 52N 8, =0 NI e N } and B, =U(i+5(.n),
k=0 i=0
where N{"" are chosen such that the following conditions are satisfied:
+<l for all 0<i<n;
o(min{S@,n)}) n
2. max{S({-1,n)}<min{S@En)}, 1<i<n
3. max{B,_ }<min{B, }.
Then, for sufficiently large n, we have B, = {k +o(w(k)):k € D}. Note that
S=U LnJ (S (i,n)) c D and small change of it a subset D is specified. Other

n=0i=0
elements of D will be changed by 0, which is also a special case of small change.

Thus, A'= G B, ={k, +o(ao(k,)):k,eD}={A} _ ci{k+o(wk)):keD}=A.
n=0

We will prove that A’ is a universality spectrum, which means that A is a
universality spectrum too. To prove that A’ is a universality spectrum, it is enough
to prove the following lemma.

Main Lemma. For every f eL’[0,1] and for arbitrary £ >0, 5 >0 and
ky € N there exists a polynomial P(x) in Walsh system such that:

k
L P@)= Y aw, (x);

k=ky
2. L el
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| a, [< 6
4. mes{| f(x)—P(x)[> 5} <e.
Proof of the Main Lemma. First we need to prove the following lemma.
Lemma. For any |alkl, 0<a<l,y>0and any N,eN with

261
N, <N, <..<N,, there exists a polynomial W(¢)= > W(i)w(t) such that:
i=1
1. m{t:|l—W(t)| > <y et
2. ‘W(i)‘ﬁa,
(1-a)+(1+a)"

Where c= 2 < 1 and Wl(t) = qu 21V0 +eot g 2Nk—l (t) for

="+t g2, ¢, =01, 0<j<k-l.
In the rest of the paper to emphasize that the polynomial W (¢) in the Lemma
depends on numbers N,,N,,...,N,_,, we will denote W (¢) =W (t){N,,....N,_}.
Proof. For the mnatural numbers N;<N,<..<N,, we denote

gz)m(t)=a'w1(2N'""t)=a~szWl (¢) with |a|<1, then ¢, =a on the first half of

each interval A% = {N;l Ai
2 k-1 2 k-1

Now for o <1 we have

[ Q=g e)dt ="l (1-a)* +(1+a)) =c [ a1,

A‘(k) A(A)

(I-a)*+(1+a)" <(1—a+1+aja:1

}, 1<i<2V  and @, =—a on the second half.

k
I()I

where we denote ¢ =
2 2

It is easy to see that ¢;, for 0<j<k—1, are constant on each of Agk),

1
1<i <2+ Let us prove that j(l —@ () ...(1—@, (1)) dt=c"
0

For n=1 it is obvious. Let us assume that the statement is true for n=%k -2
and prove it for n=k—1. We have

2Nk-1

1
I(l_¢1(t)) (1_(/71(10) dt Z J. 1_(P1(t) (1_wk—z(t))a(l_gok—l(t))adt:

0 i=1 AlD
2 Nk-1
= Z; (1_(P1(ti))a-"(l_(Pk—z(ti))a J (1_¢k-1(t))adf
i= Afk)
where ¢, € A" . Then
1 2 Nk-1
[0 @) =g () de = 32 (=00 (- g2(6)" | di=
0 i= A® '

1

=c-[(1-g () (1= (1) dt=c- "' =cF

0
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Now we present the product (1—¢,(¢))--+(1-¢,(t)) in the form of the sum:

2k

(1 —aw, (ZN" t))(l —aw, (ZN"*‘ t)) = zl w(@) wi?),

i=0
where for each i=gq 2044 9 28 q;=0,1 we denote

WO =W, o,y o (). 1t is easy to see that W(0)=1 and [W(i)|<a for

0<i<2. Thus, for nonintersecting m and n we have W, W, = Wnn- BY
2k

1
denoting W (t)=->Y w(i)wi(t), we have “1 - W(t)|adt <c® and, therefore,
0

i=1
1
m{t:[l-W )|z p} <y [[1-W©)|dt <y .
0

The second statement of the Lemma is obvious from the construction of the
polynomial.

The Lemma is proved.

Proof of the Main Lemma. Let us approximate the function f by

polynomial B so that m{t{ P — f|>50/2}<&/2. We take a such that 0<a<o,

a

A

n such that (degP, +1)%c” <§ and take y=

a

a

2[[ Pyl
deg R

We define the polynomial P(¢1)= D, p,(k)w, (1)W,(t), where the
k=0

polynomials W, (t) = W(t){Nl(k),...,N,Ek)} are chosen according to the Lemma, and

the numbers N|” are to be chosen later.

Now we put M =max{degh,n}. For all m>M we can choose the
numbers N\” from the set of numbers N such that spec{P}c B, for all
m>M and, therefore, spec{P}c {1 }7_ . Hence, we can choose numbers N’

such that min{spec{P}} >k, for any given k,. So the first and second statements
of the Main Lemma are satisfied.

gh
We have the following estimates: [P —B|=| Y p,(k)w, (1)(W,(1)-1)
=0

k

deg B
b

deg R deg R degh
m{t:P—Pl2 kZ_;} ﬁl(k)b’}gm{t: kz_;) Ial(k)(Wk(t)_lN2 kz_;') f)l(k)|y}s

degR

<> m{t:|ﬁ1(k)(M(t)—1)|Z

k=0

deg B
P y} = /;) m{t:|[W,()—1)2 y} <(deg B +1) y“c".

Then mit:|P—f[>6/2+| p,l, yi<m{t{P—PB|+|R~f1>6/2+| p,ll, ¥} <

Smi{t{P—-P > p,ll yi+m{t| P - f|>5/2} <(deg R +1)y “c" +&/2<¢.
So, we have m{t|P—- f|>0}<¢.
The Main Lemma is proved.
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Proof of the Theorem.

0
Theorem. There exists a series Y ¢, w, (x) with ¢, >0, which is
k=1

universal in the usual sense for £°[0,1].

Proof. We denote by {f, (x)},_, the sequence of polynomials with rational

coefficients and, applying successively the Main Lemma, we can choose a

sequence of polynomials Q;(x) in subsystem of the Walsh system
m/—l

0,(x)= > aw, (x), satisfying the following conditions:

1. m{x:|fk(x)—in(x)ka}>1—2_k;
j=1

2. la, < 27/, for all ie[m; ;,m;).
Let f(x)eL’[0,1]. Let us choose a subsequence of polynomials {/, } such that
m{| f(x)= £, (x) <2y >1-27F, Let B, ={x:| f(x)~ £, (x) <27},

E, ={x:| S —Zk:Qj(x)|< 2"k} and, finally, E=U N (E, NB,). Obviously,
=

n=lk=n

mj—l

[EE1.Then |[f(x)-Y| 3 aw, (x) [<27* for all xe £, NB,.

J=1\i=m;_,

Vi o
This means that l}imZa[ w, (x)= f(x) onE, ie. > a;w,(x) is universal in the
—> ! t

*i=l i=1

usual sense for °[0,1] and a, —>0.

The author is grateful to prof. M. Grigoryan for useful remarks and
discussions.
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